
Secure Computation in Cloud Environment
Fazail Amin

USICT, GGSIPU

Dwarka, New Delhi, India

Abstract— This paper presents an overview of security issues
in cloud environment and use of fully homomorphic
encryption scheme to provide blindfold computation of data.
Though there are various homomorphic encryption schemes
available but most of them are designed to work in ideal
conditions only and not all schemes are fully homomorphic. In
this paper we present a secure banking model for outsourcing
banking services into cloud, which will enable the banks to
trust the services of cloud without the need to worry about the
security of customer data.

Keywords— Homomorphic encryption, adaptive cipher text
attack, PIR (personal information retrieval system) .

I. INTRODUCTION

With recent advances in cloud computing environment it
has now become very efficient and affordable to use it.
Now it is used by almost all organizations because it
relieves them form the issues related software and hardware,
they just use what they want and pay for it accordingly. To
make cloud environment acceptable to the customers it
must meet the requirements of security and confidentiality
of the user data in the cloud and over the communication
network as well.

Currently the privacy of data can be ensured wih the
existing techniques like DES,AES, IDEA or any other
secure encryption scheme during the data acquisition and
storage. To exploit full advantage of cloud we need the
ability to do the computations on the cloud. This poses a
high risk to the security of data because to do the
computations on the data it must be extracted form storage
and the decrypted as well to perform the computations. This
decryption requires the key to put through the network
which is considered to be very insecure and makes data
vulnerable to active as well as passive attacks.

II. CLOUD COMPUTING SECURITY ISSUES

1) Trust: when two parties are involved in a transaction
then the trust can be described as follows: An entity
A is said to trust another entity B when entity A
believes that the entity B will behave exactly as
expected and required [3]. The cloud service
provider is required to provide sufficient security
policy that guarantees the use of efficient activities
are being deployed to mitigate the risk to the data
when a user outsources the data to the cloud. This
poses another risk as the security is here based on
trusting the processes and the computing base
implemented by the cloud owner.

2) Confidentiality: Data confidentiality in the cloud
means isolating the data of individual users from one
another. Data confidentiality can be breached, due to

data persistence. Data remanence is the residual
data that has been partially erased or removed. Due
to virtual separation of logical drives and lack actual
physical hardware separation between multiple users
on a single infrastructure, data remanence may lead
to the undesirable leakage of private data. Also a
malicious user, may claim a large amount of disk
space and then scavenge for sensitive data, which
can lead to unprecedented loss of data
Software confidentiality is also important aspect to
meet overall system security. It refers to trusting that
specific applications or processes will maintain and
handle the users data in a secure manner[3].

3) Privacy: privacy refers to the willingness of a user to
control the disclosure of private information. The
cloud presents a number of legal challenges towards
the privacy breach due to fuzzy perimeter of the
cloud environment and laws controlling the privacy
in various countries differ.

4) Integrity: Integrity is associated with data, software
and hardware and it maintains that these can only be
manipulated by authorised persons and by
authorised processes. Cloud service provider should
also provide security against insider attacks on data.

 Cloud computing security issues can be resolved to a
great extent if we can make sure that the data once
outsourced to the cloud is never interpreted by any other
user as well as the cloud service provider itself at any stage
even during processing on the data in the cloud. To achieve
this we require encryption schemes which can provide
secure encryption of data along with the ability to compute
the data without decrypting it at any stage. For computing
blindfolded fully homomorphic encryption schemes are
needed which are practical to implement with satisfactory
efficiency.

III. HOMOMORPHIC ENCRYPTION

A. Overview of homomorphic encryption
The basic idea of blindfold computation was originated

when computation on encrypted data was first proposed by
Rivest, Shamir, Adleman and Dertouzos in 1978 in[4].
They proposed exponentiation function and the RSA
function as additive and multiplicative homomorphics,
respectively. However these were not able to provide good
security. There are a number of cryptographic systems
which are either multiplicative or additively homomorphic
but not both. The first semantically secure homomorphic
encryption scheme was developed by Goldwasser and
Micali [5].

Fazail Amin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3058-3061

www.ijcsit.com 3058

Craig gentry was the first person to come up with a
plausible construction of a fully homomorphic encryption
scheme in 2009 [6]. It enabled the computation of any
arbitrary function on encrypted data and produced compact
cipher texts. Gentry’s encryption was based on ideal lattices.

Homomorphism is a property by which a problem
in one algebraic system can be transformed to a
problem in another algebraic system, and after solving it,
the solution can also be transformed back effectively.
Hence, cryptographic schemes with homomorphic
properties would suffice the need of security as well as
preserve the system usability in clouds[2].

In a layman’s language homomorphic encryption scheme
refers to the function which performs binary operation on
encrypted data without decrypting it. That is a function that
enables us to compute the binary operation on the plaintexts
by only manipulating the ciphertexts without any
knowledge of the encryption key : E(x1) * E(x2) = E(x1 ⊗
x2)[1].

Definition of HE : A homomorphic public key
encryption scheme HE is a probabilistic polynomial time
algorithm as shown below[9]:

HE=(Hkeygen , Henc ,Hdec , Heval)

• key generation: Hkeygen is algorithm that generates
pubik key, evaluation key and secret decryption
key.

• Encryption: Henc is algorithm takes public key and
and a single bit message μ ϵ {0,1} and outputs a
ciphertext c.

• Decryption: Hdec is algorithm that takes the secret
key and encrypted data c and outputs a message
μ* ϵ {0,1} .

• Homomorphic Evaluation:
Cf Heval(f,c1,.......cl)

 Heval is algorithm that takes the evaluation key
and and a function f : {0,1}l and a set of l
ciphertexts c1,......cl and outputs a ciphertextf cf .

Compactness: A homomorphic scheme HE is compact
if there exists a polynomial s = s(κ) such that the output
length of HEval() is at most s bits long (regardless of f or the
number of inputs). In other words, compactness requires
that the size of the ciphertext after homomorphic evaluation
does not depend on either the number of inputs or the
complexity of the function f, but only on the size of the
output of f [9].

Here we note that homomorphic encryptions schemes do
not make any difference between public and private keys.
That is both the private and the pulic key can be used for
the either purpose.

B. Gentry’s FHE scheme
 Gentry’s construction has three components: a “somewhat
homomorphic” encryption scheme that can evaluate a
limited class of functions, a method of “bootstrapping” a
sufficiently powerful homomorphic encryption scheme –
called a “bootstrappable” encryption scheme into a fully
homomorphic encryption scheme and finally, a specialized

method of turning the somewhat homomorphic scheme into
a bootstrappable scheme[9].
Step 1: The first step is to construct a somewhat

homomorphic encryption (SWHE) scheme,
namely an encryption scheme capable of
evaluating “low-degree” polynomials
homomorphically.

Step2: Bootstrapping
The somewhat homomorphic encryption (SWHE)
scheme is only able to evaluate “low degree”
polynomials, falling well short of the eventual goal
of fully homomorphic encryption (FHE). To obtain
FHE, Gentry provided a bootstrapping theorem
which states that given an SWHE scheme that can
evaluate its own decryption function, one can
transform it into a “leveled” FHE scheme, in a
completely generic way. Such an SWHE scheme is
called a bootstrappable encryption scheme. If we
assume that it is safe to encrypt the leveled FHE
secret key under its own public key, a requirement
that is referred to as “circular security” then the
transformation gives us a “pure FHE scheme.
Bootstrapping “refreshes” a ciphertext by running
the decryption function on it homomorphically,
using an encrypted secret key (given in the
evaluation key), resulting in a reduced noise.

Step3 : Squashing
Squashing the decryption circuit : the final step is
to squash the decryption circuit of the SWHE
scheme, namely transform the scheme into one
with the same homomorphic capacity but a
decryption circuit that is simple enough to allow
bootstrapping. This is done by adding a “hint”
about the secret key to the evaluation key. The hint
is a large set of elements that has a secret sparse
subset that sums to the original secret key. In order
to ensure that the hint does not reveal damaging
information about the secret key, the security of
this transformation relies on a new “sparse subset
sum” assumption. The sparsity pushes the
decryption complexity at the cost of the additional
assumption.

C. Applications of FHE
 There are number of applications where FHE can be

implemented, some applications are explained below:
• Fully homomorphic encryption can provide

secure search engine queries, where the search
provider does not know what is being searched
for.

• Use of FHE in spam filtering, where the spam
filtering agent would not need access to the plain
text email at all.

• Another use for fully homomorphic encryption is
that of secure voting, in which each voter is
guaranteed to only vote once, and the ballots
can be tallied without any individual ballot
being decrypted, ensuring the privacy of voting.
Cohen and Fischer proposed an additively
homomorphic encryption scheme based on higher

Fazail Amin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3058-3061

www.ijcsit.com 3059

order residuosity, and showed how to use it to
perform secure electronic voting. This proposal
and its descendants have made its way to modern
day web-based voting systems such as Helios.

• The trapdoor functions(lossy) developed by
Peikert and Waters is constructed from additively
homomorphic encryption schemes (with some
extra properties), which they in turn used to
construct chosen ciphertext secure (CCA-secure)
public-key encryption schemes.

• Private Information Retrieval (PIR) protocols. An
important application of homomorphic encryption
comes from the work of Kushilevitz and Ostrovsky
who showed how to construct (single-server)
Private Information Retrieval (PIR) protocols with
sub-linear communication, from any additively
homomorphic encryption scheme. Private
Information Retrieval, defined by Chor,
Kushilevitz, Goldreich and Sudan, is the problem
wherein a user attempts to retrieve the i th item in
a database of size N, revealing no information
about the index i to the database owner .

IV. PROPOSED WORK

A. Introduction:
Outsourcing the banking operations to cloud platform
Most important aspect of banking is privacy because

banks have confidential information about their customers
which are very valuable to banks and other competitors.
Insecurity about information leakage is one thing and
securely processing the data (that is banking transactions) is
another important aspect which the cloud service provider
must provide without failure. Banking operations are data
intensive they access and process huge volumes of data on
regular basis. So what we need is a secure environment
which can provide platform for secure computation
remotely without leaking any information about the data
being processed. Also the access to the database must also
not leak any information about the data being accessed.

Keeping in view the above mentioned requirements a
fully homomorphic encryption scheme can achieve the
goals if it can be implemented efficiently. Currently many
FHE schemes are available but the efficiency remains the
major issue.

B. Overview of the banking model:

• User authentication system
• Data access (controlling the access to data)
• Banking operations (this includes the various

transactions)

1) User authentication system:
A secure user authentication system is needed to provide

authorized access to data. For this purpose a public key
system can be used to set up secure communication
between user and the cloud server.

A security scheme as proposed by Zissis and Lekkas in
[3] can be used. This approach makes use of a combination
of public key cryptosystems, single sign-on feature of

Shibbeloth and LDAP (lightweight directory access
protocol). A TPP (trusted third party) can be relied upon for:

• Low and high level confidentiality
• Server and client authentication
• Generating security domains
• Cryptographic separation of data
• Certificate based authorization

2) Data access:
This is very important aspect of banking service, the

cloud service provider must not be able to get any
information about which data from database is being
accessed, that is provider shoud get information about the
index being searched for in the database. This can be
achieved by using PIR (personal information retrieval)
protocol which makes use of FHE to search for the index.

Fig.1. Banking model in cloud

3) Banking operations:
The data should not be in plaintext format at any

intermediate level and the user should be able to process the
data without decrypting it. User encrypts the data before
sending it to the cloud and if any operation needs to be done
on the data it should be done without decryption. This will
make sure that all the transactions of the bank run without
leaking any information about the data being processed.
This can be achieved efficient Fully Homomorphic
Encryption scheme.

V. FUTURE WORK AND CONCLUSION

FHE has a huge scope for providing security to
distributed systems like cloud environment. In current
scenario the main issue with the implementation of FHE for
providing secure computation is only bounded by its
efficient implementation beyond idle cases. Currently we
have devised and tested individual algorithms, in future
effort will be made to integrate and implement the proposed
banking model.

bank
FHE
module

PIR

TTP to provide
authentication

Fazail Amin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3058-3061

www.ijcsit.com 3060

REFERENCES
[1] Shubha Bharil, T. Hamaspriya, Praveen Lalwani. “a secure key for

cloud using threshold cryptography in Kerberos”. International
journal of computer applications, Volume 79-no7 oct 2013

[2] Yugi Suga, Jinbocha Mitsui, “ A fast(2,2m) threshold secret sharing
scheme using m linearly Independent binary vectors”. 16th

International conference of network based information systems
2013 IEEE.

[3] Dimitrios Zissis, Dimitrios Lekkas, “ Addressing cloud computing
security issues”, Future generation computer systems 28 (2012).
Pages 583-592.

[4] R.Rivesst, L. Adleman, M. Dertouros,”on data naks and privacy
homomorhism”,Int. foundations of secure computation,Academic
press,1978, pg 169-177.

[5] S. Goldwasser and S. Micali, “Probabilistic encryption,”Journal of
Computer and System Sciences, vol. 28, no. 2,pp. 270–299, 1984.

[6] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[7] Zhu Ping, Guang Xiang, “ the protection methods for mobile code
based homomorphic encryption and data confusion”, 2011
international conference on management of e-commerse and e-
government 2011

[8] Chiang Chia-Chu, Hayward Ryan,” An architechture for
parallelizing fully homomorphic cryptography on cloud “, 2013
seventh international conference on complex, intelligent and
software instensive systems 2013

[9] Vaikunthnathan V. , “computing blindfolded: new developments in
fully homomorphic encryption”, 2011 IEEE 52nd Annual
symposium on foundations of computer science 2011.

[10] Alejandro Llamas and Ra´ul Ernesto Gonz´alez, “A Cryptographic
Scheme for Secure Cloud Computing”. 2013 10th International
Conference on Electrical Engineering, Computing Science and
Automatic Control (CCE) Mexico City, Mexico. 2013

[11] http://docs.cloudstack.apache.org/en/latest/ “introduction to open
cloud stack

[12] https://gmplib.org/manual/Introduction-to-GMP.html#Introduction-
to-GMP

Fazail Amin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3058-3061

www.ijcsit.com 3061

